8 de marzo de 2021



Aagaard, P., Andersen, J. L., Bennekou, M., Larsson, B., Olesen, J. L., Crameri, R., … Kjaer, M. (2011). Effects of resistance training on endurance capacity and muscle fiber composition in young top-level cyclists. Scandinavian Journal of Medicine & Science in Sports, 21(6), e298- 307. https://doi.org/10.1111/j.1600-0838.2010.01283.x 

Aagaard, P., Andersen, J. L., Dyhre-Poulsen, P., Leffers, A. M., Wagner, A., Magnusson, S. P. … Simonsen, E. B. (2001). A mechanism for increased contractile strength of human pennate muscle in response to strength training: changes in muscle architecture. J Physiol, 534(Pt. 2), 613-623. Recuperado de http://www.ncbi.nlm.nih.gov/pubmed/11454977

Abe, T., DeHoyos, D. V., Pollock, M. L. y Garzarella, L. (2000). Time course for strength and muscle thickness changes following upper and lower body resistance training in men and women. Eur J Appl Physiol, 81(3), 174-180. https://doi.org/10.1007/s004210050027 . 

Achten, J. y Jeukendrup, A. E. (2003). Heart rate monitoring: applications and limitations. Sports Med, 33(7), 517-538. Recuperado de http://www.ncbi.nlm.nih.gov/pubmed/12762827

Alway, S. E., Grumbt, W. H., Stray-Gundersen, J. y Gonyea, W. J. (1992). Effects of resistance training on elbow flexors of highly competitive bodybuilders. J Appl Physiol (1985), 72(4), 1512-1521. Recuperado de http://www.ncbi.nlm.nih.gov/pubmed/1592744

Ammann, P. y Rizzoli, R. (2003). Bone strength and its determinants. Osteoporos Int, 14 Suppl 3, S13-8. https://doi.org/10.1007/s00198-002-1345-4

Andersen, J. y Aagaard, P. (2000). Myosin heavy chain IIX overshoot in human skeletal muscle. Muscle Nerve, 23(7), 1095-1104. Recuperado de http://www.ncbi.nlm.nih.gov/pubmed/10883005

Armstrong, R. B., Warren, G. L. y Warren, J. A. (1991). Mechanisms of exercise-induced muscle fibre injury. Sports Med, 12(3), 184-207. Recuperado de http://www.ncbi.nlm.nih.gov/pubmed/1784873 .

 Bamman, M. M., Newcomer, B. R., Larson-Meyer, D. E., Weinsier, R. L. y Hunter, G. R. (2000). Evaluation of the strength-size relationship in vivo using various muscle size indices. Med Sci Sports Exerc, 32(7), 1307-1313. Behm, D.G. (1995). 

Neuromuscular implications and applications of resistance training. Journal of Strength and Conditioning Research, 9(4), 264-274. doi: 10.1080/02640414.2017.1405712

 Bonewald, L. F. y Johnson, M. L. (2008). Osteocytes, mechanosensing and Wnt signaling. Bone, 42(4), 606-615. https://doi.org/10.1016/j.bone.2007.12.224

Boudenot, A., Achiou, Z. y Portier, H. (2015). Does running strengthen bone? Appl Physiol Nutr Metab, 40(12), 1309-1312. https://doi.org/10.1139/apnm-2015-0265 .37 

Breban, S., Benhamou, C. L. y Chappard, C. (2009). Dual-energy X-ray absorptiometry assessment of tibial mid-third bone mineral density in young athletes. J Clin Densitom, 12(1), 22-27. https://doi.org/10.1016/j.jocd.2008.10.009

Brotto, M. y Johnson, M. L. (2014). Endocrine crosstalk between muscle and bone. Curr Osteoporos Rep, 12(2), 135-141. https://doi.org/10.1007/s11914-014-0209-0

Buresh, R., Berg, K. y French, J. (2009). The effect of resistive exercise rest interval on hormonal response, strength, and hypertrophy with training. J Strength Cond Res, 23(1), 62- 71. https://doi.org/10.1519/JSC.0b013e318185f14a

Burr, D. B., Robling, A. G. y Turner, C. H. (2002). Effects of biomechanical stress on bones in animals. Bone, 30(5), 781-786. Recuperado de http://www.ncbi.nlm.nih.gov/pubmed/11996920

Burridge, K. y Chrzanowska-Wodnicka, M. (1996). Focal adhesions, contractility, and signaling. Annu Rev Cell Dev Biol, 12, 463-518. https://doi.org/10.1146/annurev.cellbio.12.1.463

Campos, G. E., Luecke, T. J., Wendeln, H. K., Toma, K., Hagerman, F. C., Murray, T. F., … Staron, R. S. (2002). Muscular adaptations in response to three different resistance-training regimens: specificity of repetition maximum training zones. Eur J Appl Physiol, 88(1-2), 50-60 https://doi.org/10.1007/s00421-002-0681-6

Cheung, K., Hume, P. y Maxwell, L. (2003). Delayed onset muscle soreness : treatment strategies and performance factors. Sports Med, 33(2), 145-164. Recuperado de http://www.ncbi.nlm.nih.gov/pubmed/12617692

Courteix, D., Lespessailles, E., Peres, S. L., Obert, P., Germain, P. y Benhamou, C. L. (1998). Effect of physical training on bone mineral density in prepubertal girls: A comparative study between impact-loading and non-impact-loading sports. Osteoporosis International, 8(2), 152- 158. https://doi.org/10.1007/BF02672512

Cureton, K. J., Collins, M. A., Hill, D. W. y McElhannon Jr., F. M. (1988). Muscle hypertrophy in men and women. Med Sci Sports Exerc, 20(4), 338-344. Recuperado de http://www.ncbi.nlm.nih.gov/pubmed/3173042

Dalsky, G. P. (1989). The role of exercise in the prevention of osteoporosis. Compr Ther, 15(9), 30-37. Recuperado de http://www.ncbi.nlm.nih.gov/pubmed/2676332

Domínguez, R., Lougedo, J.H., Maté-Muñoz, J.L. y Garnacho-Castaño, M.V. (2015). Efectos de la suplementación con β-alanina sobre el rendimiento deportivo. Nutrición Hospitalaria, 31(1), 155-169. http://dx.doi.org/10.3305/nh.2015.31.1.7517

Duncan, R. L. y Turner, C. H. (1995). Mechanotransduction and the functional response of bone to mechanical strain. Calcif Tissue Int, 57(5), 344-358. Recuperado de http://www.ncbi.nlm.nih.gov/pubmed/8564797

Edwards, W. B., Schnitzer, T. J. y Troy, K. L. (2014). The mechanical consequence of actual bone loss and simulated bone recovery in acute spinal cord injury. Bone, 60, 141-147. https://doi.org/10.1016/j.bone.2013.12.012

Enoka, R. M. (2002). Neuromechanics of human movement (3.ª ed). Human Kinetics. Evans, W. J. (2002). Effects of exercise on senescent muscle. Clin Orthop Relat Res, (40338 Suppl), S211-20. Folland, J. P. y Williams, A. G. (2007). 

The adaptations to strength training : morphological and neurological contributions to increased strength. Sports Med, 37(2), 145-168. Recuperado de http://www.ncbi.nlm.nih.gov/pubmed/17241104 . Franz, J. R., Lyddon, N. E. y Kram, R. (2012). 

Mechanical work performed by the individual legs during uphill and downhill walking. J Biomech, 45(2), 257-262.https://doi.org/10.1016/j.jbiomech.2011.10.034 .

 Frey-Rindova, P., De Bruin, E. D., Stussi, E., Dambacher, M. A. y Dietz, V. (2000). Bone mineral density in upper and lower extremities during 12 months after spinal cord injury measured by peripheral quantitative computed tomography. Spinal Cord, 38(1), 26-32. Recuperado de http://www.ncbi.nlm.nih.gov/pubmed/10762194

Fukunaga, T., Miyatani, M., Tachi, M., Kouzaki, M., Kawakami, Y. y Kanehisa, H. (2001). Muscle volume is a major determinant of joint torque in humans. Acta Physiol Scand, 172(4), 249- 255. https://doi.org/10.1046/j.1365-201x.2001.00867.x . Furrer, R., Jaspers, R. T., Baggerman, H. L., Bravenboer, N., Lips, P. y De Haan, A. (2013). 

Attenuated increase in maximal force of rat medial gastrocnemius muscle after concurrent peak power and endurance training. Biomed Res Int, 2013, 935671. https://doi.org/10.1155/2013/935671

Garfinkel, S. y Cafarelli, E. (1992). Relative changes in maximal force, EMG, and muscle cross sectional area after isometric training. Med Sci Sports Exerc, 24(11), 1220-1227. Recuperado de http://www.ncbi.nlm.nih.gov/pubmed/1435173

Goldspink, G. (1998). Cellular and molecular aspects of muscle growth, adaptation and ageing. Gerodontology, 15(1), 35-43. Recuperado de http://www.ncbi.nlm.nih.gov/pubmed/10530169.

 Goldspink, G. (2002). Gene expression in skeletal muscle. Biochem Soc Trans, 30(2), 285-290. https://doi.org/10.1042/

Gordon, S. E., Kraemer, W. J., Vos, N. H., Lynch, J. M. y Knuttgen, H. G. (1994). Effect of acidbase balance on the growth hormone response to acute high-intensity cycle exercise. J Appl Physiol (1985), 76(2), 821-829. Recuperado de http://www.ncbi.nlm.nih.gov/pubmed/8175595

Goto, K., Ishii, N., Kizuka, T. y Takamatsu, K. (2005). The impact of metabolic stress on hormonal responses and muscular adaptations. Med Sci Sports Exerc, 37(6), 955-963. Recuperado de http://www.ncbi.nlm.nih.gov/pubmed/15947720

Gross, T. S., Poliachik, S. L., Ausk, B. J., Sanford, D. A., Becker, B. A. y Srinivasan, S. (2004). Why rest stimulates bone formation: a hypothesis based on complex adaptive phenomenon. Exerc Sport Sci Rev, 32(1), 9-13. Recuperado de http://www.ncbi.nlm.nih.gov/pubmed/14748543

Gunter, K. B., Almstedt, H. C. y Janz, K. F. (2012). Physical activity in childhood may be the39 key to optimizing lifespan skeletal health. Exercise and Sport Sciences Reviews, 40(1), 13-21. https://doi.org/10.1097/JES.0b013e318236e5ee

Hakkinen, K., Alen, M. y Komi, P. V. (1985). Changes in isometric force- and relaxation-time, electromyographic and muscle fibre characteristics of human skeletal muscle during strength training and detraining. Acta Physiol Scand, 125(4), 573-585. https://doi.org/10.1111/j.1748-1716.1985.tb07760.x

Hakkinen, K., Kallinen, M., Linnamo, V., Pastinen, U. M., Newton, R. U. y Kraemer, W. J. (1996). Neuromuscular adaptations during bilateral versus unilateral strength training in middle-aged and elderly men and women. Acta Physiol Scand, 158(1), 77-88.https://doi.org/10.1046/j.1365-201X.1996.523293000.x

Hakkinen, K. y Komi, P. V. (1983a). Alterations of mechanical characteristics of human skeletal muscle during strength training. Eur J Appl Physiol Occup Physiol, 50(2), 161-172. 

Hakkinen, K. y Komi, P. V. (1983b). Electromyographic and mechanical characteristics of human skeletal muscle during fatigue under voluntary and reflex conditions. Electroencephalogr Clin Neurophysiol, 55(4), 436-444. Recuperado de http://www.ncbi.nlm.nih.gov/pubmed/6187537 .

 Hakkinen, K. y Komi, P. V. (1983c). Electromyographic changes during strength training and detraining. Med Sci Sports Exerc, 15(6), 455-460. Recuperado de http://www.ncbi.nlm.nih.gov/pubmed/6656553

Hakkinen, K., Newton, R. U., Gordon, S. E., McCormick, M., Volek, J. S., Nindl, B. C., … Kraemer, W. J. (1998). Changes in muscle morphology, electromyographic activity, and force production characteristics during progressive strength training in young and older men. J Gerontol A Biol Sci Med Sci, 53(6), B415-23. Recuperado de http://www.ncbi.nlm.nih.gov/pubmed/9823737

Hornberger, T. A. y Chien, S. (2006). Mechanical stimuli and nutrients regulate rapamycinsensitive signaling through distinct mechanisms in skeletal muscle. J Cell Biochem, 97(6), 1207-1216. https://doi.org/10.1002/jcb.20671

Hubal, M. J., Gordish-Dressman, H., Thompson, P. D., Price, T. B., Hoffman, E. P., Angelopoulos, T. J., … Clarkson, P. M. (2005). Variability in muscle size and strength gain after unilateral resistance training. Med Sci Sports Exerc, 37(6), 964-972.

 Jansson, E., Esbjornsson, M., Holm, I. y Jacobs, I. (1990). Increase in the proportion of fasttwitch muscle fibres by sprint training in males. Acta Physiol Scand, 140(3), 359-363. https://doi.org/10.1111/j.1748-1716.1990.tb09010.x

Jones, D. A. y Rutherford, O. M. (1987). Human muscle strength training: the effects of three different regimens and the nature of the resultant changes. J Physiol, 391, 1–11. Recuperado de http://www.ncbi.nlm.nih.gov/pubmed/3443943 .

 Jones, D. A., Rutherford, O. M. y Parker, D. F. (1989). Physiological changes in skeletal muscle as a result of strength training. Q J Exp Physiol, 74(3), 233-256. 

Kish, K., Mezil, Y., Ward, W. E., Klentrou, P. y Falk, B. (2015). Effects of plyometric exercise session on markers of bone turnover in boys and young men. European Journal of Applied40 Physiology, 115(10), 2115-2124. https://doi.org/10.1007/s00421-015-3191-z

Kjaer, M., Jorgensen, N. R., Heinemeier, K. y Magnusson, S. P. (2015). Exercise and Regulation of Bone and Collagen Tissue Biology. Prog Mol Biol Transl Sci, 135, 259-291. https://doi.org/10.1016/bs.pmbts.2015.07.008

Klentrou, P. (2016). Influence of Exercise and Training on Critical Stages of Bone Growth and Development. Pediatr Exerc Sci, 28(2), 178-186. https://doi.org/10.1123/pes.2015-0265

Klentrou, P. y Plyley, M. (2003). Onset of puberty, menstrual frequency, and body fat in elite rhythmic gymnasts compared with normal controls. Br J Sports Med, 37(6), 490-494. Recuperado de http://www.ncbi.nlm.nih.gov/pubmed/14665585

Komi, P. V, Viitasalo, J. T., Rauramaa, R. y Vihko, V. (1978). Effect of isometric strength training of mechanical, electrical, and metabolic aspects of muscle function. Eur J Appl Physiol Occup Physiol, 40(1), 45-55. Recuperado de http://www.ncbi.nlm.nih.gov/pubmed/569576

Kukulka, C. G. y Clamann, H. P. (1981). Comparison of the recruitment and discharge properties of motor units in human brachial biceps and adductor pollicis during isometric contractions. Brain Res, 219(1), 45-55. Recuperado de http://www.ncbi.nlm.nih.gov/pubmed/7260629

Lambers, F. M., Schulte, F. A., Kuhn, G., Webster, D. J. y Muller, R. (2011). Mouse tail vertebrae adapt to cyclic mechanical loading by increasing bone formation rate and decreasing bone resorption rate as shown by time-lapsed in vivo imaging of dynamic bone morphometry. Bone, 49(6), 1340-1350. https://doi.org/10.1016/j.bone.2011.08.035

Lang, T., LeBlanc, A., Evans, H., Lu, Y., Genant, H. y Yu, A. (2004). Cortical and trabecular bone mineral loss from the spine and hip in long-duration spaceflight. J Bone Miner Res, 19(6), 1006-1012. https://doi.org/10.1359/JBMR.040307

Lee, T. Q., Shapiro, T. A. y Bell, D. M. (1997). Biomechanical properties of human tibias in long-term spinal cord injury. J Rehabil Res Dev, 34(3), 295-302. Recuperado de http://www.ncbi.nlm.nih.gov/pubmed/9239622

Leppanen, O. V, Sievanen, H., Jokihaara, J., Pajamaki, I., Kannus, P. y Jarvinen, T. L. (2008). Pathogenesis of age-related osteoporosis: impaired mechano-responsiveness of bone is not the culprit. PLoS One, 3(7), e2540. https://doi.org/10.1371/journal.pone.0002540

Lichtwark, G.A. y Wilson, A.M. (2007). Is achilles tendon compliance optimized for máximum efficiency during locomotion? Journal of Biomechanics, 40, 1768-1775. DOI:10.1016/j.jbiomech.2006.07.025. 

 MacDougall, J. D., Hicks, A. L., MacDonald, J. R., McKelvie, R. S., Green, H. J. y Smith, K. M. (1998). Muscle performance and enzymatic adaptations to sprint interval training. J Appl Physiol (1985), 84(6), 2138-2142. Recuperado de http://www.ncbi.nlm.nih.gov/pubmed/9609810 .41

 MacIntyre, D. L., Reid, W. D. y McKenzie, D. C. (1995). Delayed muscle soreness. The inflammatory response to muscle injury and its clinical implications. Sports Med, 20(1), 24-40. Recuperado de http://www.ncbi.nlm.nih.gov/pubmed/7481277

Maimoun, L., Coste, O., Philibert, P., Briot, K., Mura, T., Galtier, F., … Sultan, C. (2013). Peripubertal female athletes in high-impact sports show improved bone mass acquisition and bone geometry. Metabolism, 62(8), 1088-1098. https://doi.org/10.1016/j.metabol.2012.11.010

Mandigout, S., Lecoq, A. M., Benhamou, C. L. y Courteix, D. (2004). Composition corporelle et densité minérale osseuse chez des garçons et des filles prépubères: effet de 13 semaines d’entraînement en endurance. Sci. Sports, 19(6), 3. 

McDonagh, M. J. y Davies, C. T. (1984). Adaptive response of mammalian skeletal muscle to exercise with high loads. Eur J Appl Physiol Occup Physiol, 52(2), 139-155. Recuperado de http://www.ncbi.nlm.nih.gov/pubmed/6370691

Mezil, Y. A., Allison, D., Kish, K., Ditor, D., Ward, W. E., Tsiani, E. y Klentrou, P. (2015). Response of Bone Turnover Markers and Cytokines to High-Intensity Low-Impact Exercise. Medicine and Science in Sports and Exercise, 47(7), 1495-502. https://doi.org/10.1249/MSS.0000000000000555

Morkin, E. (1970). Postnatal muscle fiber assembly: localization of newly synthesized myofibrillar proteins. Science, 167(3924), 1499-1501. Recuperado de http://www.ncbi.nlm.nih.gov/pubmed/4906003

Murphy, M. M., Lawson, J. A., Mathew, S. J., Hutcheson, D. A. y Kardon, G. (2011). Satellite cells, connective tissue fibroblasts and their interactions are crucial for muscle regeneration. Development (Cambridge, England), 138(17), 3625-37. https://doi.org/10.1242/dev.064162

Narici, M. V, Hoppeler, H., Kayser, B., Landoni, L., Claassen, H., Gavardi, C., … Cerretelli, P. (1996). Human quadriceps cross-sectional area, torque and neural activation during 6 months strength training. Acta Physiol Scand, 157(2), 175-186. https://doi.org/10.1046/j.1365-201X.1996.483230000.x . 

Narici, M. V, Roi, G. S., Landoni, L., Minetti, A. E. y Cerretelli, P. (1989). Changes in force, cross-sectional area and neural activation during strength training and detraining of the human quadriceps. Eur J Appl Physiol Occup Physiol, 59(4), 310-319. Recuperado de http://www.ncbi.nlm.nih.gov/pubmed/2583179 . 

Patten, C., Kamen, G. y Rowland, D. M. (2001). Adaptations in maximal motor unit discharge rate to strength training in young and older adults. Muscle Nerve, 24(4), 542-550. Recuperado de http://www.ncbi.nlm.nih.gov/pubmed/11268027

Pierce, J. R., Clark, B. C., Ploutz-Snyder, L. L. y Kanaley, J. A. (2006). Growth hormone and muscle function responses to skeletal muscle ischemia. J Appl Physiol (1985), 101(6), 1588- 1595. https://doi.org/10.1152/japplphysiol.00585.2006

Pomerants, T., Tillmann, V., Karelson, K., Jürimäe, J. y Jürimäe, T. (2008). Impact of acute exercise on bone turnover and growth hormone/insulin-like growth factor axis in boys. The42 Journal of Sports Medicine and Physical Fitness, 48(2), 266-71. Recuperado de http://www.ncbi.nlm.nih.gov/pubmed/18427424

Reitsma, W. (1969). Skeletal muscle hypertrophy after heavy exercise in rats with surgically reduced muscle function. American Journal of Physical Medicine, 48(5), 237-58. Recuperado de http://www.ncbi.nlm.nih.gov/pubmed/5822317

Ross, A., Levedtt, M. y Riek, S. (2001). Neural influences on sprint running-training adaptations and acute responses. Sports Medicine, 31(6), 409-425. DOI:10.2165/00007256-200131060-00002 

Sale, D. G. (1988). Neural adaptation to resistance training. Med Sci Sports Exerc, 20(5 Suppl), S135-45. Recuperado de http://www.ncbi.nlm.nih.gov/pubmed/3057313

Schiaffino, S., Ausoni, S., Gorza, L., Saggin, L., Gundersen, K. y Lomo, T. (1988). Myosin heavy chain isoforms and velocity of shortening of type 2 skeletal muscle fibres. Acta Physiol Scand, 134(4), 575-576. https://doi.org/10.1111/j.1748-1716.1998.tb08539.x

Schiaffino, S., Gorza, L., Sartore, S., Saggin, L., Ausoni, S., Vianello, M. … Lomo, T. (1989). Three myosin heavy chain isoforms in type 2 skeletal muscle fibres. J Muscle Res Cell Motil, 10(3), 197-205. Recuperado de http://www.ncbi.nlm.nih.gov/pubmed/2547831

Schoenau, E. y Frost, H. M. (2002). The ‘muscle-bone unit’ in children and adolescents. Calcif Tissue Int, 70(5), 405-407. https://doi.org/10.1007/s00223-001-0048-8

Schoenfeld, B. J. (2010). The mechanisms of muscle hypertrophy and their application to resistance training. J Strength Cond Res, 24(10), 2857-2872. https://doi.org/10.1519/JSC.0b013e3181e840f3 .


Schott, J., McCully, K. y Rutherford, O. M. (1995). The role of metabolites in strength training. II. Short versus long isometric contractions. Eur J Appl Physiol Occup Physiol, 71(4), 337-341. Recuperado de http://www.ncbi.nlm.nih.gov/pubmed/8549577

Scott, J. P. R., Sale, C., Greeves, J. P., Casey, A., Dutton, J. y Fraser, W. D. (2011). The role of exercise intensity in the bone metabolic response to an acute bout of weight-bearing exercise. Journal of Applied Physiology, 110(2), 423-432. https://doi.org/10.1152/japplphysiol.00764.2010

Shima, N., Ishida, K., Katayama, K., Morotome, Y., Sato, Y. y Miyamura, M. (2002). Cross education of muscular strength during unilateral resistance training and detraining. Eur J Appl Physiol, 86(4), 287-294. Recuperado de http://www.ncbi.nlm.nih.gov/pubmed/11990741 . Smith, R. C. y Rutherford, O. M. (1995). 

The role of metabolites in strength training. I. A comparison of eccentric and concentric contractions. Eur J Appl Physiol Occup Physiol, 71(4), 332-336. Recuperado de http://www.ncbi.nlm.nih.gov/pubmed/8549576 . Spangenburg, E. E. (2009). 

Changes in muscle mass with mechanical load: possible cellular mechanisms. Appl Physiol Nutr Metab, 34(3), 328-335. https://doi.org/10.1139/h09-010

Srinivasan, S., Weimer, D. A., Agans, S. C., Bain, S. D. y Gross, T. S. (2002). Low-magnitude mechanical loading becomes osteogenic when rest is inserted between each load cycle. J Bone Miner Res, 17(9), 1613-1620. https://doi.org/10.1359/jbmr.2002.17.9.1613 .43 

Suominen, H. (2006). Muscle training for bone strength. Aging Clin Exp Res, 18(2), 85-93. Recuperado de http://www.ncbi.nlm.nih.gov/pubmed/16702776

Tesch, P. A., Colliander, E. B. y Kaiser, P. (1986). Muscle metabolism during intense, heavy resistance exercise. Eur J Appl Physiol Occup Physiol, 55(4), 362-366. Recuperado de http://www.ncbi.nlm.nih.gov/pubmed/3758035

Thibodeau, G. y Patton, K. (2007). Anatomía y fisiología. Evolve. Thorstensson, A., Sjödin, B. y Karlsson, J. (1975). Enzyme activities and muscle strength after "sprint training" in man. Acta Physiologica Scandinavica, 94(3), 313-8. https://doi.org/10.1111/j.1748-1716.1975.tb05891.x .

Toft, I., Lindal, S., Bonaa, K. H. y Jenssen, T. (2003). Quantitative measurement of muscle fiber composition in a normal population. Muscle Nerve, 28(1), 101-108. https://doi.org/10.1002/mus.10373

Toigo, M. y Boutellier, U. (2006). New fundamental resistance exercise determinants of molecular and cellular muscle adaptations. Eur J Appl Physiol, 97(6), 643-663. https://doi.org/10.1007/s00421-006-0238-1 . 

Turner, C. H. (1998). Three rules for bone adaptation to mechanical stimuli. Bone, 23(5), 399- 407. Recuperado de http://www.ncbi.nlm.nih.gov/pubmed/9823445

Vierck, J., O’Reilly, B., Hossner, K., Antonio, J., Byrne, K., Bucci, L. y Dodson, M. (2000). Satellite cell regulation following myotrauma caused by resistance exercise. Cell Biol Int, 24(5), 263-272. https://doi.org/10.1006/cbir.2000.0499 . 

Volek, J.S. y Kraemer, W.J. (1996). Creatine supplemenntation: Its effect on human muscular performance and body composition. Journal of Strength and Conditioning Research, 10(3), 200-210.

 Welle, S., Totterman, S. y Thornton, C. (1996). Effect of age on muscle hypertrophy induced by resistance training. J Gerontol A Biol Sci Med Sci, 51(6), M270-5. Recuperado de http://www.ncbi.nlm.nih.gov/pubmed/8914498 . 

Williamson, D. L., Gallagher, P. M., Carroll, C. C., Raue, U. y Trappe, S. W. (2001). Reduction in hybrid single muscle fiber proportions with resistance training in humans. J Appl Physiol (1985), 91(5), 1955-1961. Recuperado de http://www.ncbi.nlm.nih.gov/pubmed/11641330 . Wilmore, J. y Costill, D. (2015). 

Strength increases from the motor program: comparison of training with maximal voluntary and imagined muscle contractions. J Neurophysiol, 67(5), 1114-1123. Recuperado de http://www.ncbi.nlm.nih.gov/pubmed/1597701

Zijdewind, I., Toering, S. T., Bessem, B., Van Der Laan, O. y Diercks, R. L. (2003). Effects of44 imagery motor training on torque production of ankle plantar flexor muscles. Muscle Nerve, 28(2), 168-173. https://doi.org/10.1002/mus.10

Fisiólogo del Ejercicio (Ph.D.). Especialista en ejercicio físico como tratamiento coadyuvante de diferentes enfermedades y en readaptación fisico-deportiva postlesional.

0 comentarios:

Publicar un comentario

Gracias por tu comentario.

Consulta aquí nuestros programas de ejercicio físico y:

Ricardo Sanz Orús
· (00)34 677 46 92 46
Con la tecnología de Blogger.